Abelian varieties with complex multiplication and modular by Goro Shimura

By Goro Shimura

Reciprocity legislation of assorted types play a primary position in quantity idea. within the simplest case, one obtains a clear formula through roots of cohesion, that are precise values of exponential services. an analogous thought will be constructed for exact values of elliptic or elliptic modular capabilities, and is termed complicated multiplication of such capabilities. In 1900 Hilbert proposed the generalization of those because the 12th of his recognized difficulties. during this ebook, Goro Shimura offers the main accomplished generalizations of this kind by way of pointing out a number of reciprocity legislation when it comes to abelian forms, theta features, and modular features of numerous variables, together with Siegel modular features.

This topic is heavily hooked up with the zeta functionality of an abelian style, that's additionally coated as a first-rate subject matter within the booklet. The 3rd subject explored via Shimura is a number of the algebraic kin one of the classes of abelian integrals. The research of such algebraicity is comparatively new, yet has attracted the curiosity of more and more many researchers. a few of the themes mentioned during this booklet haven't been lined sooner than. particularly, this can be the 1st e-book during which the themes of varied algebraic kin one of the sessions of abelian integrals, in addition to the certain values of theta and Siegel modular capabilities, are handled widely.

Show description

Read Online or Download Abelian varieties with complex multiplication and modular functions PDF

Similar algebraic geometry books

A survey of the Hodge conjecture

This booklet offers an creation to an issue of important curiosity in transcendental algebraic geometry: the Hodge conjecture. such as 15 lectures plus addenda and appendices, the quantity is predicated on a sequence of lectures brought by way of Professor Lewis on the Centre de Recherches Mathematiques (CRM).

Algebraic Functions And Projective Curves

This publication provides an advent to algebraic capabilities and projective curves. It covers a variety of fabric by way of dishing out with the equipment of algebraic geometry and continuing without delay through valuation thought to the most effects on functionality fields. It additionally develops the idea of singular curves by way of learning maps to projective area, together with themes reminiscent of Weierstrass issues in attribute p, and the Gorenstein family members for singularities of aircraft curves.

Probability on Algebraic Structures: Ams Special Session on Probability on Algebraic Structures, March 12-13, 1999, Gainesville, Florida

This quantity offers effects from an AMS specified consultation hung on the subject in Gainesville (FL). The papers incorporated are written via a global staff of famous experts who provide a major cross-section of present paintings within the box. additionally there are expository papers that supply an road for non-specialists to appreciate difficulties during this zone.

Snowbird Lectures on String Geometry

The interplay and cross-fertilization of arithmetic and physics is ubiquitous within the heritage of either disciplines. particularly, the new advancements of string idea have ended in a few really new parts of universal curiosity between mathematicians and physicists, a few of that are explored within the papers during this quantity.

Extra resources for Abelian varieties with complex multiplication and modular functions

Sample text

Elements of the stalk (i∗ Λ)h(V ) , with ui primitive, tangent to h(Ei ), and pointing away from h(V ). Then m w(Ej )uj = 0. j=1 Let’s clarify what these conditions mean. (1) tells us that locally h(E) is a line of rational slope; this is a well-defined notion in a tropical affine manifold. 5). In other words, there is a 32 1. THE TROPICS Figure 25. The darker lines give a tropical curve. unique invariant direction at each point of ∆, and h(E) must be tangent to that direction. 4, this invariant direction is precisely the direction of the edge of P passing through the point of ∆.

T m is the Poincar´e dual basis to T0 , . . , Tm . It is often useful to define g ij to be the inverse matrix to gij = X Ti ∪ Tj , 1In the next section, we will redefine quantum cohomology as a family of products on the tangent bundle of a certain manifold. 1. THE A-MODEL so that T i = 41 g ij Tj , and Ti ∗ Tj = (∂yi ∂yj ∂ya Φ)g ak Tk . a,k It is not obvious that this product is associative; that it is associative is a fundamental observation and can be proved from additional properties of GromovWitten invariants.

Given a triple (B, P, ϕ), where (B, P) is a tropical manifold and ϕ is a multi-valued strictly convex PL function on B, we will define the discrete Legendre transform of ˇ ϕ). 4), and set τˇ := ∆ϕτ , the Newton polyhedron of ϕτ . 10. Hence σ ˇ can be identified with a face of τˇ. ˇ where Pˇ = {ˇ ˇ P), ˇ is obtained by This gives us the pair (B, σ | σ ∈ P}, and B identifying τˇ1 and τˇ2 along the common face σ ˇ if σ ∈ P is the smallest cell of P containing τ1 and τ2 . ˇ constructed in this way is a topological manifold, with Pˇ the It is easy to see B ˇ \ ∂B ˇ are homeomorphic.

Download PDF sample

Rated 4.44 of 5 – based on 12 votes